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THE DISSOCIATION OF DENSE LIQUID NITROGEN

Marvin Ross
Lawrence Livermore National Laboratory
Livermore, Ca 94550

ABSTRACT

A theoretical model has been developed to examine the dissociation of
shock compressed liquid nitrogen. Calculated shock pressures and shock
temperatures are in agreement with experiment. The model correctly
predicts the highly unusual feature of a reflected shock point lying
above the principal Hugoniot and of a decrease in the temperature of a
reflected shock. The shock cooling is shown to be the consequence of a

volume dependent dissociation energy.



Introduction

The dissociation of molecular nitrogen has been the subject of several
recent experimental and theoretical studies. McMahan and LeSar1 predicted
that the molecular solid at 0 X sghould dissociate to a monatomic phase near
0.8 Mbar. However subsequent diamond-anvil cell studies have shown no
evidence for such a transition up to 1.8 anr.z The fallure to observe this
transition has been attributed to a large energy barrier between the two
phases.3 In a series of papers Nellis et al.‘ employing the LLNL two
stage light gas gun have reported shock wave measurements which show that
liquid nitrogen begins to undergo a transformation at a pressure of 0.31 Mbar
and a temperature of about 7000 K. The most likely explhnation is that they
have observed molecular dissociation. More recently Radousky et al.s have
reported shock temperature measurements for this material along the principal
and reflected Hugoniots and also of the electrical conductivity along the
principal Hugoniot.

One of the earliest shock wave studies on molecular nitrogen was carried
out by Christian et 31.6 They used an explosive shock tube fo compress the
gas initially at room temperature and 580 mm pressure. The object of that
study was to determine which of two conflicting values of the dissociation
energies, 9.76 or 7.38 ev., was correct. In the case of a gas the equation of
state is quite simple, and the Hugoniot can be predicted exactly. Only the
energy absorbed in the dissociation process can alter the Hugoniot. The two
energies are sufficiently different so as to provide a clear cut choice.
Christian et al. determined that only the former value will predict a Hugoniot
curve that agrees with experiment and this remains the currently accepted

value. PFor the case of a dense liquid the uncertainties in the composition,



intermolecular forces and statistical mechanics of the mixture present a
considerably more difficult problem.

The objective of this paper is to derive a theoretical model to examine
the experimental data and provide imsight into the atomic and molecular
physics of the dense dissociating fluid. 1In the next section we examine a
sequence of models of increasing complexity for the purpose of isolating the
esgsential features of a 'successful' theory. Our presentation is frankly
pedagogic and we proceed along the path we actually traveled in building the

model. This, we believe, provides a clearer presentation of the theoretical

problems and approximations.

Theoretical Models

As a point of reference we begin our study with a model that neglects
dissociation and only considers a fluid of interacting molecules. We then
advance to a "textbook" treatment of the dissociation of molecules into free
atoms employing the law of mass action with a constant value of the
dissociation energy. The model fails because it does not properly consider
the cohesive energy of thé atomic phase. This feature is introduced in the

final part of this section and the resulting model is shown to agree with most

of the experimental data.

A) The Liquid Iz Hugoniot.

The Hugoniot of liquid nitrogen has been calculated by a number of
authors."a'g In the simplest model, the one which neglects dissociation,
the intermolecular potential is described by a spherical angle averaged

interaction. This has been shown to be a good approximation along the



Hugoniot. The vibrational and electronic energy levels are taken to be the

free molecule values.7

The exponential-six (exp-6) potential has been used extensively in the

study of many dense liquids including nitrogen.
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In the present study a = 13.2, r* = 4.09 A and e¢/k = 101.9 K. Except for

the first these values are nearly the same as those used in a previous study.
The parameters were chosen to scale from the argon potential by the use of
the law of corresponding states'. Earlier uork7 had suggested a value for
of 13.0. But the difference in the predicted Hugoniots are quite minor and
either value will provide a satisfactory fit to the undissociated portion of
the Hugoniot.

In the present paper we use the same fluid theory as we have in our

earlier uork7 where the Helmholtz free energy is written as the sum of the

free energies of all degrees of freedom
PA = B‘t + B‘f + BAb + BA: + ﬂAi.ni: * (2)

The explicit expressions for the first four terms are well known. They are
respectively, the translational, rotational, vibrationsl and electronic free

energies. The last term Aint' the interaction free energy, has been

0

computed by soft sphere variational theory1 using the free energy of the

inverse twelfth power potential as the reference
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where V is the volume and

2
A = 53—=-§§- NKT, F(n) = —(n?/2 + 0% + w/2)
1-n

sHs(r. n) is the hard-sphere radial distribution function based on the
Percus-Yevick equation. All of these terms are functions of the hard-sphere
packing fraction n = (I/S)I/Vda. where d is a hard-sphere diameter. The
appropriate n (or 4) is the one that minimizes the rhs of Eq. (3), because

the internal degrees of freedom are independent of density (hence, n).

The pressure (P) and total emergy (E) may be computed using thermodynamic

relations

BEV _,. Polimt) |4, Zint? (4)
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The energy Erve of the internmal degrees of freedom is given by

a fhv fhv P
BEr“e =3 + 2 + eﬂhv_ . T in qe (6)

The first term corresponds to a contribution by n degrees of rotational
freedom (two for diatomics, three for nonlinear polyatomics). The second term
is the vibrational energy. For Hz hv/k = 3392 K. The electronic

partition function for lz is

N
2 - 6.167/T +

q, 2 = 1 + 3e o 7.351 + e 8.546/T )

3

where T is the temperature in electron volts (eV).

The perturbation theory is easily generalized to multicomponent systems.
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Hugoniot curves are calculated by finding a (P, V, E) point that

satisfies the Hugoniot relation
E-E =2 (P+P) (V. -V (8)
o 2 (-] o ’

where the subscript zero refers to the initial conditions.

The principal Hugoniot calculated with this model is shown in Fig. 1
(curve A) is in good agreement with the data of Zubarev and Teleginll and
Hellis et al.4 up to about 310 kbar. Above this pressure the theoretical
curve continues to rise rapidly but fails to exhibit the large increase in
compressibilty observed experimentally. Shock temperature measurements
provide a very sensitive test of the theory. They have been measured for
liquid nitrogen by Radousky et al.s and the calculations shown in Fig. 2
exhibit the same pattern of disagreement as the Hugoniot. Clearly this model
is incomplete because it fails to incorporate dissoclation. The introduction
of dissociation with a simple mixture model and a constant value of the
dissociation energy (Do = 9,76 eV) leads to curve B which predicts a small

degree of dissociation and a Hugonliot that differs only slightly from curve A.

B) Mixture Model of Molecular Dissociationm.

There are a number of reasons why the model might fail even when the
dissociation energy is included. For example it does not consider volume
dependent shifts in the molecular electronic and vibrational energy levels.
These are likely to be important at high temperature and could favor the
appearance of the atomic phase. But the most likely cause stems from the
neglect of chemical of binding for the monatomic phase. Briefly, we will show

that at the conditions of interest the monatomic phase must be a degenerate



metal and a proper model must include the cohesive energy. This leads to a
volume dependence in the dissociation energy.

To see why this must be so consider that in the gas phase 9.76 ev are
required to break the chemical bond and move the atoms to infinite
separation. Clearly this value cannot be correct in the very dense fluid
because it does not account for the recombination of atoms into other chemical
bonding states. The other group V elements, for example exibit on strong
covalently bonded 3-fold coordinated networks which are slight distortions of
simple cubic. This binding would return some of the energy expended in the
bond breaking and decrease the energy needed for dissociation. An analogous
effect known as 'ionization lowering' is observed in dense plasmas where the
interaction of the ionized electron with the remaining particles leads to a
lowering of the effective ionization energy. We may refer to the molecular
analog as ‘'dissociation lowering.' As an example consider the case in which
the molecule in the solid is compressed to such a high density that the
molecular bond distance becomes comparable to the intermolecular separation.
At this density much less than 9.76 ev would be required to dissociate the
molecule. Thus we may conclude that the dissociation energy should decrease
continuously from the gas phase value to some much smaller figure at high
density.

We have introduced this reasoning into our thermodynamic model by
including in the free energy expression below the term Eb equal the binding
energy of the atomic phase per two atoms.

Congider a reacting mixture of N atoms and uz molecules. Let x be the

fraction of molecules that have undergone dissociation into atoms. We write F

the free energy per two atoms as;



0

0
r-(l-x)r' +“zu+rmix+Aint+be . (9)

where F: and !‘o are respectively the free energies of the isolated molecula

2 2N

and of two atoms. F

mix is the free energy of mixing;

F = kT(1 -~ X)n((1l - x)/7(1 + x)) + kT2xAn((2x/(1 + x)). (10)

mix

Ai.n

interaction of the two components. Aint can be written in terms of fluid

t is the nonideal free energy or the excess free energy arising from the

variational theory as:

2
o 2N 3
Mg S AL+t (-0 0% I ¢.2_'2(r) g(r, dnz_uz) ar

2
| 3
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2§ 3
+x" op | & by g(r, dl—ll) q°r (11)
A:ef is the reference free energy of the mixture which at this point will

remain unspecified. The additional factors 2 and 4 enter into the expression
because the free energy has been defined in units of 2 atoms in the form of
molecules or atoms. Thus each integral represents respectively the
interaction of two molecules, two times the interaction of one molecule with
one atom, and four times the interaction of a pair of atoms.

Ve ‘nave_ already shown that the intermolecular potential (eq. 1)
accurately reproduces the experimental Hugoniot up to 310 kbar. At this point
we introduce an approximation for the intermolecular forces of the N-N and
Il—llz interaction. The shock data suggests that at the conditions considered

in this study liquid nitrogen is a complex mixture of interacting molecules,



atoms and ions with a rich variety of excited electronic, vibrational and
chemical states. A proper calculation demands that the properties of all
these states be obtained and their ensemble averages determined by minimizing
the free energy with respect to composition. This represents a formidable
undertaking. Instead we have made several approximations which we consider
plausible in light of all the uncertainties and which also have the advantage
that they considerably simplify the statistical mechanical theory.

We constructed model atom-atom and atom-molecule potentials from a
knowledge of the llz—llz potential. The energy of interaction of a single N

atom with an ll2 molecule is to be approximated as one-half the interaction

energy of two molecules.

b _x '%‘nz-uz .

2

Similarly the energy of interaction between two atoms is one half that of an

atom and a molecule or one-fourth that of the molecule-molecule energy.

by y = % "’l-nz = '}T "z"z

By making these approximations and assuming the existence of a single averaged
hard sphere diameter the expression for Ai.nt of the mixture reduces to:
0 2

1N 3
Aint = Aref toy | %z_uz(r) g(r, d) 4°r (12)

which is the same expression as for the pure fluid.

As a consequence of these approximations the nonideal energy of the
fluid, the part resulting from the interatomic interactions, remains unchanged
by the dissociation. The only changes in the total free energy come from the

compositional changes in the internal degrees of freedom of the two species



and the mixing entropy. Our method for constructing the intermolecular
potentials was inspired by some earlier work of Amdur et al.lz and
Vanderslice et a1.13 They approached the problem in the reverse direction.
They first determined an atom-atom potential from approximate Valence Bond
theory. They then obtained an I—Iz potential and then an lz-nz

potential by averaging over all angles of the N-N interaction. Instead we
have reversed the procedure by starting out with an N —lz pair-potential
(Eq. (1)) which fits the molecular phase shock data. However the essential
idea is the same. It assumes that interatomic forces can be built up from
atom-atom interactionms.

The alternative procedure which is to carry out rigorous quantum
mechanical calculations of the N-N and H—Iz potentials is unlikely to be
useful in the present case since we are dealing with a fluid that is three
times normal liquid density and many body chemical interactions of the
nitrogen atom will be important. For example the N-N poteqtial is known from
the vibrational properties of the .2 molecule. But to use this potential in
a dense atomic fluid is to assume that every nitrogen atom forms a diatomic
molecule with each of its neighbors. This leads to a binding that is too
strong and leads to unrealistically large amounts of dissociation at

relatively low temperatures.14

The present approximation carries with it the advantage that it greatly
simplifies the statistical thermodynamics and as will be shown below permits
us to use the law of mass action rather than the more complicated free energy
ninimization for a multi-component system.

Minimization of F (Eq. (9)) with respect to x gives:
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where

0 0
B =exp [- (an + Eb - Flz)IRI]

and

(qt qe) e~ (Da + Eb)lxm
B=——————“ 5 N5 N (14)

2 2 2
WL Y 9

De is the depth of the oscillator well and for '2 and has the value 9.91

ev. De is related to the dissociation energy D° by De = Do + 1/2
hv. The q's are the atomic and molecular partition functions defined

earlier. The pressure and energy are calculated as in the case of the pure

fluid. The expressions for the energy and pressure of the mixture are:

L |
2 N
E=3/2 (1 + x) RT + uint + (1 - x) Erve + (1 - x) De + 2x Ee + be. (15)

and

+ xP (16)

P=(l+x)RT/_+P b .

v int

where Pb = - 3 :b/av .

E: is the electronic energy of a single atom. For atomic nitrogen the

electronic partition function can be written:

q: = 4 + 10 exp(- 2.38/T) + 6exp(- 3.58/T) Qan

-11-



It will be shown that at the conditions of interest atomic nitrogen is a
degenerate metal. We assume it 1is an expanded metallic fluid with an
electronic structure made up of a filled 25 band and three degenerate 2p-like
conduction bands. The justification for this step will become apparent
further on. This picture is one in which the electronic energy levels

approach their atomic limit at low density. This leads to a value of

L (18)

for ground state of the electronic partition function replacing Eq. (17).

A rigorous calculation of the atomic phase binding energy Eb is beyond
the scope of the present paper. Instead we have chosen this term to be a
volume dependent function which is obtained from a fit to the principal
Hugoniot and is required also to be in agreement with the 0 K isotherm of the
metal obtained by Hc!ahanl'ls using electron band theory and discussed later

in the next section.

We write the volume dependent dissociation energy as:

3
D= De + Eb V<20 cm /mol.
D= De vV > 20 cm?lmnl
where Eb = - A(20 - V)z and De = 9,91 ev. (19)

With this model good agreement is obtained with measured shock pressures
and temperatures by using a value for A of 0.045 (curve C) or 0.050 (curve D)
as shown in Figs. 1 and 2. Table 1 lists some of the properties calculated
along curve C. Values of D and x along curve D are plotted in Fig. 3. An

interesting feature regarding these curves is that they approach Volv = 4
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(V =8.6 cmslmole) as a limiting compression which is the value one expects
for a monatomic or fully dissociated diatomic gas.

An important thermodynamic consequence of the decreasing dissociation
energy is that Pb will have negative values for Vv < 20 em?/mole. In
physical terms Eqs. (15) and (16) state that for each molecule that
dissociates, the two atoms are converted into metal atoms lying on a much
lower isotherm (see Fig. 5). Thus the dissociation process leads to a drop in
total pressure of P, x at constant volume or equivalently to a volume

b
collapse at fixed pressure.

Up to nearly 310 kbar and 7300 K the fraction of dissociated molecules is
small (1%) but above this pressure the dissociation rises rapidly absorbing
shock energy and leading to the S-like behavior of the shock temperature
curve. The negative contribution to the pressure (Pbx) arising from the
cohesive bonding of the metal phase leads to the large increase in the
compressibility observed along the Hugoniot. This is illustrated in Fig. 4
which plots the ratio of Pbx to the total Hugoniot pressure. An analogous
behavior has been observed in shock compressed liquid argon and xenon. In
these liquids electrons are thermally excited from the top of a filled p-like
valence band to the bottom of an unfilled d-like conduction band in which they
have a lower pressure. This means the energy band gap separating these two
states is decreasing with decreasing volume. This introduces a negative
contribution to the pressure just as it does in the present case. And with
the same effect. In the case of uz it is the dissociation energy rather
than the electron band gap that is decreasing with compression and makes the

negative contribution.
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C) Metallic Nitrogen

An examination of the data in Table 1 shows that at these densities
atomic nitrogen forms a degenerate metal. For example at a Hugoniot pressure
of 640 kbar or 10 cm?lmol—nz. the calculated fraction of dissociated
molecules is 0.37. Since each molecule forms two atoms the atom concentration
is 0.74 w/v atomslcms. Based on the band structure we assumed earlier there
are 2 electrons in the 2s state and one in each of three degenerate 2p-like
conduction bands. A free electron approximation of the band width leads to a
Fermi energy of 4.6 eV. This is considerably higher than the 13000 K (1.1 ev)
shock temperature. Thus under these conditions atomic nitfo;en may be
considered as a degenerate metal with a negligible temperature dependence and
an electronic ground state of three. It may be argued that the conduction
band should contain 5 electrons in which case the Fermi energy would be 13.5
eV, at these conditions and metallic nitrogen would be an even more
degenerate. As a point of reference the reader should note that 10
cn?lmole-lz is 5 cmalmole—I which is two times the density of normal
alumimm.

The Hugonliot calculations are rather sensitive to the precise value of
Q:. Calculations were also made using the atomic electronic partition
function (Eq. (20)). These lead to Hugoniot curves which are similar to those
in Fig. 1 and agree with experiment. However since this function has a much
larger heat capacity it leads to shock temperatures that are too low (Fig. 5).

In the limit of x = 1 and T = 0 K Eqs.(21) and (22) reduce to expressions

for the energy and pressure of the pure metallic phase:

~14—



By Uit v % (19)

and
qu = Pi.nt - as.b/av (20)
.
where U =1/2 ¥ ¢“ is the lattice energy obtained by summing over all
int ij -N
lattice sites and P = — 3U, . /3V. These equations are similar to

int int
many empirical equation of state models which have been constructed using a

sum over atom-atom interactions and a term to represent the volume dependent
binding energy and electron kinetic energy. A well known example is the
Pseudopotential Theory for simple metals.
Figure 6 provides an overview of the nitrogen equation of state for the
present model showing the 0 K molecular and metallic isotherms and the
int

calculated isotherms for atomic nitrogen in several different crystal
1,14

Hugoniot. .uint and P were calculated for a bec lattice. McMahan has
structures using the linear muffin tin orbital (LMTO) method. His
results are also shown in Fig. 6. The hcp isotherm, not shown, lies very
close to and slightly below the fcc curve. Table 2 compares the calculated
energies at the largest volume studied by McMahan (9.09 analmol.lz). The
overall agreement of the present model with McMahan's results, between bce and
the more open sc, are consistent with what one would expect from having
determined empirically the binding energy from expanded liquid metal data. At
higher pressure our isotherms approach those of McMahan's close packed
structures. Thus we see the pressure drop on dissociation Pb is given by
the change in pressure on 5|oi.ng from the molecular to the metallic state, and
Bb is the change in binding energy.

Kerley and sl\v'li:emlee.k9 have recently reported theoretical calculations

for nitrogen. They used a fluid model which like ours is based on hard sphere
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theory. But they use band theoretical models to obtain a metal phase equation
of state. In principal their method should provide an accurate determination
of the binding energy. In practice they found it necessary to introduce an
additional binding energy of roughly half the molecular dissoclation.

In retrospect it appears that the binding energy and its volume
dependence could have been obtained directly from McMahan's results alone by
fitting Eb to Eqs. (19) and (20). Although it may not be apparent a-priori
which is the correct crystal structure. These results do suggest a procedure
by which dissociation curves for other dense molecular liquids such as

hydrogen could be calculated using the metallic properties.
Doubly Shocked Nitrogen

A) Reflected Hugoniots

Up to now our discussion has been restricted to examining the single
shock or principal Hugoniot. Measurements have also been made for doubly
shocked nitrogen up to 1.1 Mbar. 1In these experiments the first shock after
traversing the sample is reflected off of a stiff end plate material such as
copper. By measuring the shock velocity in this metal and impedance matching
with nitrogen one can determine the pressure and density of the twice shocked
liquid. Figure 7 compares the data of Nellis et al.’ with the theoretical
calculations. The pressures reached along the Hugoniot by the first shocks
are labeled as A-E and the respective reflected experimental points (A'-E')
are identified by the error bars. The solid and dashed curves are theoretical
calculations. All the calculated reflected curves are found to fall within
the narrow shaded band. These calculations correctly predict the unusual

feature of a reflected Hugoniot lying above the principal Hugoniot. They are
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also in excellent agreement with the experimental points (D'-E') at 0.84 and
1.11 Mbar. However we have been unable to obtain agreement with ﬁha points
(A'-C') despite some considerable amount of ‘experimentation’ using a number
of hypothetical models. Consequently we have been forced to entertain the
possibility that these are not equilibrium states. To test this we made

calculations which assume that for points A'-C*' the relaxation time for

9

dissociation is longer than the experimental resolution time (10 = sec.).

In other words these states do not undergo dissociation. The predicted
reflected shock points, shown by the dashed curves, although shifted to higher
pressures are still too low. The improved agreement suggests that
nonequilibrium effects may be a factor.

Very little is known about relaxation rates at liquid shock conditioms.

Vibrational relaxation rates extrapolated from shock tube resultsl6 by

10

scaling the density predict equilibrium times of 10 = sec., an order of

magnitude less than the experimental resolution time. Such an extrapolation
assumes that only binary collisions are important so that actual times are
likely to be even shorter. BRotational relaxation is more rapid than
vibrational and can be assumed to be in continuous equilibrium with the
translational temperature. Molecular dissociation rates for gases have been
measured in shock tubes.17 We scaled these rates to liquid densities using
hard sphere collision rate t‘heory.l8 The scaled dissociation times for the
conditions of the shock experiments were in the range 0.02-1.1 mns. These
times are much less than the time resolution of the temperature and
conductivity measurements and less than the time resolution of the

equation-of-state experiments. Consequently we expect non-equilibrium effects

to be small in all the experiments.
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B) Reflected Temperatures and Shock Cooling.

Possibly the most fascinating and illuminating feature of the nitrogen
measurements are the reflected shock temperatures which in one experiment
actually shows evidence of a cooling. In Fig. 8 the experimental points are
compared with theoretical calculations. We find that the shock cooling is
extremely sensitive to the binding energy. For example double shock
temperatures calculated using A = .045 in the binding energy show very little
decrease. Whereas calculations using A = 0.050 and shown in the figure
predict shock cooling and are in fair agreement with experiment. 1In general
the gsize of the experimental error makes it difficult to evaluate the goodness
of the theory. In Fig. 9 the dissociation energy in the reshocked states has
been held constant at their initial values along the principal Hugoniot. This
leads to a much smaller degree of dissocilation and to reflected temperatures
all of which increase with temperatures. This is shown in Fig. 10 where we
have plotted the degree of dissoclation versus volume for each model along the
upper most theoretical curves of Figs. 8 and 9. The calculated temperatures
are indicated at several points. As the dissociation becomes large and
approaches its limit near x = 0.7 the temperature begins to increase again.

The reflected shock temperatures are clearly related to the degree of
dissociation. We have already seen in Figs. 1 and 2 that along the principal
Hugoniot the dissociation which i1s an endothermic process causes a lowering in
the pressure and temperature rise with compression. 1In the case of reflected
shocks their paths approach the isentrope and they undergo relatively small
temperature rises. In this regard it is important to recognize that in the
shock process a fixed amount of kinetic energy is delivered impulsively to a
sample. This energy will be partitioned amongst the various degrees of

freedom to achieve an equilibrium final state. If the dissociation energy
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were decreasing with compression this would lead to an increase in the
dissociated fraction even if there were no temperature rise. Thus if the
degree of dissociation 1s sufficiently large during reshock then coupled with
a2 near isentropic process some energy must be removed from the translational
and vibrational modes which leads to a cooling. If there were no change in
the dissociation energy along the reshock path, as 1s the case in the lower
curve shown in Fig. 10, then a temperature rise will take place accompanied by
only a small increase in the dissoclation. Clearly the degree of volume

dependency in the dissociation energy controls the amount of temperature rise

and fall.

Discussion

The model described in this paper is an approximation to a very
complicated situation. Our primary intent has been to acquire an
understanding of the underlying physics. The key to the success of the
present model is the cohesive energy of the atomic phase which introduces an
effective volume dependent dissociation energy. This determines the metal
equation of state and it is the binding energy of the metal which causes the
considerable softening of the Hugoniot. Although we have agssumed a
metallic-like atomic phase in fact this phase might very well include a
mixture of doubly bonded molecules and short chains of ¥ polymers. Our model
does not provide a unique description of the chemical composition. Additional
models can no doubt be constructed to agree with the data. But we do believe
that the important feature of a volume dependent dissociation energy will need
be an essential feature. The method by which we approximated the metallic N-N

potential is open to argument. But since any realistic calculation of this
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property at these conditions must involve a considerable effort and is
unlikely to provide quantitative results in any case we chose, as a first try,
the intuitive procedure which also greatly simplified the ensuing
thermodynamics. In general the model succeeds in calculating the pressures
and temperatures along the principal Hugoniot in agreement with experiment.
The observation of shock cooling provides strong evidence that the
effective dissociation energy must be decreasing with compression. We believe
that this is a general phenomena of reflected shocks and should be observed in
liquid argon, xenon and CsI, materials which have electron band gaps that

decrease with compression. Work is now proceeding along these lines.
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Table 1. Theoretical Hugoniot

Initial conditions are V_ = 34.7 cn>/mole, T, = 77.6 K, B = 0.0 kbar.

V cm’/mol P (kbar) (K) DeV) x
34.7 0.0 77.6 9.91
22.00 21.0 18 9.91 0
20.00 40.8 821 9.91
18.00 79.2 1656 9.71 10714
16.00 156.8 3502 9.11 1078
15.00 224.2 5234 8.66 5 x 107°
14.00 308.9 7333 8.11 0.011
13.00 389.9 8936 7.46 0.047
12.00 466.4 10033 6.71 0.113
11.00 542.4 10808 5.86 0.218
10.00 623.1 11477 4.91 0.377
9.50 671.3 11978 4.40 0.487
9.00 742.1 13196 3.86 0.631
8.71 845.0 Kbar 16000 3.54 0.750

Table 2. Energy of Metallic Nitrogen
T=0K, Va=09.09 cn'/mole-N,

E(Ry/atom)
Model C (A = .045) - 0.1259
Model D (A = .050) - 0.1455
bee, reference 14 - 0.1277

- 0.2021

sc, reference 14
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Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. S

Fig. 6

FIGURE CAPTIONS

Liquid nitrogen Hugonlots, Vo = 34.7 cmslmole. Experimental

data from Ref. 4(|-°-|) and Ref. 11 (|-0-|). Theoretical

curves are discussed in the text. A does not include dissociation.
B includes dissociation to atoms using a constant value of the
dissociation energy (9.76 eV). C and D include a binding energy of
the monatomic phase with values respectively of A = 0.045 and 0.050

in Eq. (20).

Liquid nitrogen shock temperatures, Vo = 34.7 cmslmole.
Experimental data from reference 5. Theoretical curves follow the

same caption as in Fig. 1.

Disgociation energies (D) and fractions of dissociated molecules (x)
calculated along theoretical Hugoniot curve D in Figs. 1 and 2.

The ratio of cohegive pressure Pbx to total Hugoniot pressure PH

versus volume.

Comparison of shock temperatures calculated with metal (Q: = 3),
and atomic (Eq. (17)) partition functions designated respectively by

solid and dashed curves.

¥Molecular and atomic nitrogen equation of state. The dashed curves
represent the results of McMahan. The theoretical curve is
described in the text and was calculated using the binding energy
obtained by fitting the present model to the Hugoniot. Pb is the

pressure drop on dissociation.
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Fig. 7

Fig. 8

Fig. 9

Fig. 10

Reflected shock pressures. The letters A-E designate the first
shock starting points along the principal Hugoniot and A'-E' are the
final reflected points. The bars represent experimental data from
Ref. 5. The shaded area represents the locus of ‘equilibrium'
theoretical calculations. Dashed lines are calculations which omit

dissoclation and are nonequilibrium calculations.

Reflected shock temperatures for liquid uz. The initial
experimental points along the principal Hugoniot and final points
(bars) are designated by the same symbols. The solid curves were
calculated as described in the text using the volume dependent

dissociation energy. The calculated dissociated fraction is shown

in parenthesis.

Reflected shock temperatures for liquid Hz. Experimental data
follows the same caption as in Fig. 8. The dashed curves were
calculated using a dissoclation energy held constant at its value
along on the principal Hugoniot. The calculated dissociation

fraction is shown in parenthesis.
The degree of dissociatlion (x) along Hugoniots relected from V =

12.5 cmalmol. plotted versus volume for each model indicated in

the text. The calculated temperatures are shown for several points.
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